
dev.tiki.org 2024-05-9 Page 1 of 6

Where to commit

A very important decision is where to commit?: LTS? Stable? Dev?
General principle
The general principle is that everything goes to master (trunk), and once approved, cherry-picked
(backported) to still supported branches (where more releases are planned). How far you can backport
depends on the nature of the contribution.

Where to commit
Commit status and order for each open branch:

Name Currently this is git branch What is
allowed in
this branch

Before
commiting
here, first
commit to

Dev [https://gitlab.com/tikiwiki/tiki/commits/master master
(trunk)]
(future 28x)

Functional
[ENH]ancements
and new
features, [FIX]es
and
[TRA]nslations
Most
development
(new features)
happens here.
New features
need to be
functional, but
don't need to be
complete. In
theory, should
be releasable at
any time. This is
the place for
[REF]actoring or
cosmetic
changes.
Also: Update
language
strings. If you
commit to
master, and
after you want to
commit to a
stable branch,
please see how
to git cherry-
pick.

This is
the first
place to
propose
a merge
request
(MR)

https://trunkdev.tiki.org/Git-cherry-pick
https://trunkdev.tiki.org/Git-cherry-pick

dev.tiki.org 2024-05-9 Page 2 of 6

Name Currently this is git branch What is
allowed in
this branch

Before
commiting
here, first
commit to

Next
Stable

[https://gitlab.com/tikiwiki/tiki/-/tree/27.x branches/27.x] Exists only
between the
time Dev has
been branched
into the next
stable, and the
next stable .0
release has been
released. Bug
fixes and
Translations only

Dev

Current
Stable

[https://gitlab.com/tikiwiki/tiki/-/tree/26.x branches/26.x] Bug fixes and
minor safe
enhancements

Dev,
Next
Stable
(if any)

Previous
Stable

None Exists only
until .1
release of
Current Stable
has been
released. Then
EoL or
becomes the
Previous
Stable LTS

Dev, Current
Stable

Previous
Stable;
LTS

[https://gitlab.com/tikiwiki/tiki/-/tree/24.x branches/24.x] Minor safe
enhancements,
fixes and
translations
backported from
Current Stable
or Next Stable

Dev,
Current
Stable
or Next
Stable

Security
fixes
only;
LTS

[https://gitlab.com/tikiwiki/tiki/-/tree/21.x branches/21.x] Security fixes
only

Dev,
Current
Stable
or Next
Stable,
Previous
Stable
LTS

dev.tiki.org 2024-05-9 Page 3 of 6

The jQuery Sortable Tables feature must be activated for the sort feature to work.

Legend:

STS: Standard Term Support
LTS: Long Term Support

The table above shows which branch is appropriate to commit what type of code. How close we are to the
release also has an impact (ex.: don't start a major refactoring just before a release). Please see: Freeze
and Slush.

Please be extra careful about backporting changes to the database schema. Please see: Database Schema
Upgrade

Please also see: Versions and Git Workflow.

Sometimes, shared feature branches can be created for major things that are not stable enough yet, and
require multiple developers to collaborate over a long period. These branches will never become a
released branch directly.

For everything else, the author of the branch should create a Merge Request (MR) from his/her personal
branch when it's ready (or even better, a draft MR before it's ready).

The commit process (the human part)

Standard process
Create a merge request (MR) from your personal fork on GitLab against master .1.
Use GitLab labels to state your intentions on where your commit will go.2.

Add Tiki GitLab labels such as needsCherryPicksTo26.x, needsCherryPicksTomaster or
doNOTBackport as appropriate to the MR. It is each developer's responsibility to make sure these
labels are created and removed for their own MR(s).

You need developer access to create the labels (Guest or Reporter level is not enough). If you
do not yet have developer access, or you are an external contributor, add the info in the MR
description and someone will do it for you. Please see list of developers .

Once the initial MR is merged (and all pipelines are green), use Git cherry-pick to create
additional MR(s) to cherry-pick into the appropriate branch(es). The description should link to
the initial MR so we know it was backported.
Remove the backport label from the initial MR once the additional MR(s) have been created
(do not wait for MRs to be merged in).

To see which merged MRs are still missing a cherry pick, use this GitLab query:
https://gitlab.com/tikiwiki/tiki/-/merge_requests?scope=all&state=merged&label_name[]=needsCherryPic
ksTo%3A%3A*

Alternate process
In some cases, it's more productive for the developer to work against a branch (not master), and later to
cherry pick to higher branches all the way to master. In this case, please use the label
"needsCherryPicksTomaster"
https://gitlab.com/tikiwiki/tiki/-/merge_requests?scope=all&state=merged&label_name[]=needsCherryPic
ksTo%3A%3Amaster

https://trunkdev.tiki.org/Freeze-and-Slush
https://trunkdev.tiki.org/Freeze-and-Slush
https://trunkdev.tiki.org/Database-Schema-Upgrade
https://trunkdev.tiki.org/Database-Schema-Upgrade
https://tiki.org/Versions
https://trunkdev.tiki.org/Git-Workflow
https://gitlab.com/help/user/project/merge_requests/index.md
https://trunkdev.tiki.org/3-Rules
https://gitlab.com/tikiwiki/tiki
https://gitlab.com/tikiwiki/tiki/-/labels
https://gitlab.com/tikiwiki/tiki/-/project_members
https://trunkdev.tiki.org/Git-cherry-pick
https://gitlab.com/tikiwiki/tiki/-/merge_requests?scope=all&state=merged&label_name%5B%5D=needsCherryPicksTo%3A%3A*
https://gitlab.com/tikiwiki/tiki/-/merge_requests?scope=all&state=merged&label_name%5B%5D=needsCherryPicksTo%3A%3A*
https://gitlab.com/tikiwiki/tiki/-/merge_requests?scope=all&state=merged&label_name%5B%5D=needsCherryPicksTo%3A%3A*
https://gitlab.com/tikiwiki/tiki/-/merge_requests?scope=all&state=merged&label_name%5B%5D=needsCherryPicksTo%3A%3Amaster
https://gitlab.com/tikiwiki/tiki/-/merge_requests?scope=all&state=merged&label_name%5B%5D=needsCherryPicksTo%3A%3Amaster
https://gitlab.com/tikiwiki/tiki/-/merge_requests?scope=all&state=merged&label_name%5B%5D=needsCherryPicksTo%3A%3Amaster

dev.tiki.org 2024-05-9 Page 4 of 6

Collaborating

Use MRs. Even core developers use them for their own commits (but frequently self merge them).1.
This has a lot of benefits with little overhead:

You can make sure you didn't break the CI (Auto-merge and forget)1.
If you did break something, whoever notices has a place to discuss the change2.
The commits on a MR can be grouped using arbitrary criterias (regardless of whether or not you3.
intend to ultimately squash it) so it's least disruptive to your flow. Examples include:

Daily work MR (very useful for seniors fixing a bunch of small independent things without1.
waiting for CI constantly)
MR for collaborating with a specific person(s). Essentially micro-topic branches. Be careful2.
not to force-push too much if you collaborate with other people on a MR.
Draft MR containing your own small feature branch so you can get feedback, or force the CI3.
to run.

Don't hesitate to put a MR back in Draft (either as the author or the reviewer)2.
It doesn't mean it's bad. Rather, it's a signal to reviewers not to re-review this until they are1.
asked to, or the MR is out of draft.

When you fixed something in the code on a MR, don't just wait! Do something to inform the3.
reviewer(s): (comment, resolve a thread, take the MR out of draft). MRs are rebased frequently, so
the mere fact you pushed code isn't enough information for reviewers to notice.

When a reviewer comments or asks you a question, please try to answer quickly (so it's fresh in1.
the reviewer's mind).

For MR reviewers

What to review

Does this make sense in Tiki?
Does it duplicate functionality or code?
If a new library was added: How to pick a software library
Will it break things for current users?

Code quality
Is the code quality higher than the average in Tiki?
Is there some copy-pasted code?

Does it seem like this was actually tested?
As Victor wrote: "code reviewers usually do code quality review and note specific areas to
improve but we are not compilers. You have to test every place of code you touch before
committing ."

Risk assessment: Keep context in mind.

For an initial MR1.
How is the code (does it improve the general quality of the code (not is it perfect...)? Is it1.
understandable? Does it seem to you the developer may be unaware of a standardized way to
do a similar thing in Tiki, etc.
What are the risks? Aside from the obvious "This may lead to bugs", for a MR to master,2.
important questions are

Could this result in data corruption/ambiguity?
Could this make the code much harder to refactor in the future?

For a MR on a branch2.

https://trunkdev.tiki.org/How-to-pick-a-software-library
https://gitlab.com/tikiwiki/tiki/-/merge_requests/1881#note_1147340658
https://gitlab.com/tikiwiki/tiki/-/merge_requests/1881#note_1147340658
https://gitlab.com/tikiwiki/tiki/-/merge_requests/1881#note_1147340658

dev.tiki.org 2024-05-9 Page 5 of 6

The trade-offs are different. On a branch, change is inherently more risky than on master.1.
The MR has already been reviewed and approved once, so your question is more "What are
the risks related to the difference between the two branches".

During a branch stabilization period, the risk is almost inexistant for most changes. The1.
further master has diverged from the branch, the more thought must be put into
merging cherry-picks.

During stabilization periods, it is acceptable for more senior developers to cherry pick2.
directly into the "Next Stable" branch, and remove labels as they do so
For the same reason, but for a longer period, one can group multiple unrelated cherry-picks3.
in a single branch MR to backport them.

How to merge it
Rebase the MR1.
Check if the MR should be squashed, and if so, merge the text of the commit message so it represents2.
the whole.
Merging without pipelines after a rebase. When you are reviewing and merging multiple MRs in a3.
session, this can save a lot of time if you feel you know it won't break the pipeline. Just make sure it's
not the last thing you do in the day, so you still have time to fix the pipeline.

See also: Tools for Merge Request reviewers

When is this supposed to be released?

See Version lifecycle

Definition of "security-only" phase
The "security-only" of the LTS period is intended for security fixes, but could include a few bug fixes
as well.

We will review security vulnerabilities reported to the Security Team
Publish a fix or a way to deactivate the feature.

If the included code doesn't have a patch for that version
What if a security vulnerability requires major code changes, that are not suitable for LTS?

We'll disable the feature via System Configuration so you can can choose to use it knowing the
risks, decide not to use it, or upgrade.

The documentation at doc.tiki.org is kept up to date for more recent versions, so expect to see there
some documentation about features not available in your Tiki.

Other notes
If you're working on Cypht Webmail, please see https://github.com/cypht-org/cypht/wiki/Lifecycle
and How to upgrade Cypht within Tiki via Composer
If you must change the English version (but are not changing the meaning and so the translations are
still valid, please use Mass spelling correction. If you can't use that, just add to Pending text
corrections
If we are close to a release, and you have a change with a risk of regression, try to consult the release
manager.
There are some things that are black and white and there are many shades of gray. In case of doubt,
ask on the Dev Mailing List
https://trunkbaseddevelopment.com/

https://trunkdev.tiki.org/Tools-for-Merge-Request-reviewers
https://trunkdev.tiki.org/Version-lifecycle
https://tiki.org/Security%20Team
https://doc.tiki.org/System%20Configuration
https://trunkdev.tiki.org/tiki-editpage.php?page=Cypht
https://github.com/cypht-org/cypht/wiki/Lifecycle
https://github.com/cypht-org/cypht/wiki/Lifecycle
https://trunkdev.tiki.org/How-to-upgrade-Cypht-within-Tiki-via-Composer
https://trunkdev.tiki.org/Mass-spelling-correction
https://trunkdev.tiki.org/Pending-text-corrections
https://trunkdev.tiki.org/Pending-text-corrections
https://tiki.org/Release%20Roles
https://tiki.org/Release%20Roles
https://trunkdev.tiki.org/Dev-Mailing-List
https://trunkbaseddevelopment.com/
https://trunkbaseddevelopment.com/

dev.tiki.org 2024-05-9 Page 6 of 6

Related
Commit Tags
Git Workflow
Commit Guidelines
Backport guidelines
Git cherry-pick

Alias names of this page:
WhereToCommit | Where

https://trunkdev.tiki.org/Commit-Tags
https://trunkdev.tiki.org/Git-Workflow
https://trunkdev.tiki.org/Commit-Guidelines
https://trunkdev.tiki.org/Backport-guidelines
https://trunkdev.tiki.org/Git-cherry-pick
https://trunkdev.tiki.org/tiki-editpage.php?page=WhereToCommit
https://trunkdev.tiki.org/tiki-editpage.php?page=Where

	Where to commit
	Where to commit
	The commit process (the human part)
	Standard process
	Alternate process

	Collaborating
	For MR reviewers
	What to review
	Risk assessment: Keep context in mind.
	How to merge it

	When is this supposed to be released?
	Deﬁnition of "security-only" phase
	Other notes
	Related

