
dev.tiki.org 2024-05-19 Page 1 of 3

When to make major changes
As of 2021-04-29, this is a draft. Over the next few weeks, please participate to this thought process and
once the community has spoken, this will become our new official guidelines on the matter. 

Where to commit explains well when and where to make bug fixes and add features. But when and where
is an appropriate time to make major changes? (refactoring, code cleanup, increase requirements, change
Composer dependencies, etc.). Where is easy: it's always in trunk (perhaps after an experimental branch).
But when? It depends.

In light of:

Info in related pages
Versions
Where to commit
Semi-automatic merging period
When to branch
When to release - think popcorn
How to release
Freeze and Slush
Git cherry-pick

Definitions
LTS: A Long Term Support version as per Versions. Ex.: Tiki21
LTS+1: the first major stable version after an LTS. Ex.: Tiki22
LTS+2: the second major stable version after an LTS. Ex.: Tiki23
There is no LTS+3 because it's time for another LTS.
In the context of this document, we are mostly talking about the development cycle of the version. So
LTS+2 starts the day the 23.x branch is created, even before 23.0 is released.

A version has phases:

branch (from trunk)
x.0, x.1, x.2, etc.
EoL

Community dynamics on backports and LTS versions:
Many community members prefer to run on LTS (for the stability), but they still want bug fixes and a
some innovation. And they contribute as per Where to commit. So backports are done.
Backports are the most risky/time-consuming

May need to backport to more than one version. For each commit, the cycle is repeated. It's easy
to get mixed up. You may need to commit to LTS+2, then backport to LTS+1 (which you don't
use), to then be able to backport to LTS (your goal)

There is a period that the branch and trunk have very similar code bases, so backports are easy. To
ease backports, for a while we have a Semi-automatic merging period. But after a while, it's too much
work/risk, and we stop, and backports are done manually.
Some LTS+1 are massive disruption

Tiki7 Trackers Revamp
Tiki13: Bootstrap 3 integration
Tiki19: Bootstrap 3 to 4 transition

But others are pretty incremental, and are pretty much like a LTS+2

https://trunkdev.tiki.org/Where-to-commit
https://doc.tiki.org/requirements
https://doc.tiki.org/Composer
https://tiki.org/Versions
https://trunkdev.tiki.org/Where-to-commit
https://trunkdev.tiki.org/Semi-automatic-merging-period
https://trunkdev.tiki.org/When-to-branch
https://tiki.org/When%20to%20release%20-%20think%20popcorn
https://trunkdev.tiki.org/How-to-release
https://trunkdev.tiki.org/Freeze-and-Slush
https://trunkdev.tiki.org/Git-cherry-pick
https://tiki.org/Versions
https://trunkdev.tiki.org/Tiki21
https://trunkdev.tiki.org/Tiki22
https://trunkdev.tiki.org/Tiki23
https://trunkdev.tiki.org/Where-to-commit
https://trunkdev.tiki.org/Semi-automatic-merging-period
https://doc.tiki.org/Tiki7
https://trunkdev.tiki.org/Trackers-Revamp
https://doc.tiki.org/Tiki13
https://doc.tiki.org/Tiki19
https://themes.tiki.org/Bootstrap%203%20to%204%20transition


dev.tiki.org 2024-05-19 Page 2 of 3

Tiki10
Tiki16
Tiki22

There is a symmetry above but this is not planned. Each LTS+1 was an opportunity for massive changes
and it just so happens that innovations at that time where not disruptive.

Here are some guidelines:

Type of major change

Mass cosmetic cleanups of the code
These have a low risk to introduce issues, but they make backports difficult/risky because the code
structure changed.

Examples:

Moving to https://www.php-fig.org/psr/psr-12/ 

Good options

Outside of the Semi-automatic merging period
4-6 weeks before branching, so it gives time to fix minor issues in trunk before branching

Any version works but likely a tiny bit better to do for LTS +2 because there are fewer backports
than LTS+1.

Increasing requirements
This should be announced ASAP (so the community gets ready) and done early in LTS+1 development
cycle do developers take advantage of new capabilities. Can also be done for LTS+2 but it should be
announced before LTS+1 is released so users without those requirements stay on LTS. Best to avoid doing
in LTS so everything has ample time to stabilize.

What we don't want: someone upgrades to LTS+1 and PHP version is OK. But then PHP requirement
changes and they can't upgrade to it, and LTS+1 goes out of support.

Removing the use of deprecated features
As PHP versions evolve, we get advanced warning that some features will eventually be removed. They
continue working for a while with warnings.

This can be done at any time outside of the Semi-automatic merging period. The sooner the better.

Often, out challenge here is not so much Tiki code (we just fix it), but the Composer dependencies which
may be lagging. So this forces us to change libs, which increases workload and risk. But new lib will also
bring opportunities.

Major system-wide changes
aka Breaking Changes. Ex.: Move to Bootstrap 3 or 4 or 5.

This should be done early in LTS+1 development cycle.
This will be a ton of work
This will be a ton of changes
There will be a ton of issues

https://doc.tiki.org/Tiki10
https://doc.tiki.org/Tiki16
https://doc.tiki.org/Tiki22
https://www.php-fig.org/psr/psr-12/
https://www.php-fig.org/psr/psr-12/
https://trunkdev.tiki.org/Semi-automatic-merging-period
https://trunkdev.tiki.org/Semi-automatic-merging-period
https://doc.tiki.org/Composer


dev.tiki.org 2024-05-19 Page 3 of 3

These versions are known to be of lesser quality and tend to be avoided for larger projects (where it's
difficult to test everything). But such users can just stay on LTS.

This is necessary to innovate.

So with this logic, the move to Bootstrap 5 will happen in Tiki25

https://doc.tiki.org/Bootstrap
https://trunkdev.tiki.org/Tiki25

	When to make major changes
	Info in related pages
	Deﬁnitions
	Community dynamics on backports and LTS versions:
	Type of major change
	Mass cosmetic cleanups of the code
	Increasing requirements
	Removing the use of deprecated features
	Major system-wide changes



