
dev.tiki.org 2024-05-20 Page 1 of 4

Tracker Roadmap
Trackers are one of the most important features in Tiki. For many of the larger installations, they are a
central component. Over the years, the user interface was refined and the end result is a good feature to
build on for many of the Tiki users. Many ran into issues by pushing them too far, and too often, the issues
could not be resolved. For all of the extensibility and flexibility available to the end users, the code is
monolithic, rigid and brittle. Few developers have put enough effort to understand the code well enough
to fix even minor issues reported and it likely turns away many others.

It has been known for a long time that important refactoring is required in the code. Many venues were
suggested. Most often, a complete rewrite is proposed. However, a complete rewrite would not allow
current users to migrate their installation because there is no way the behavior could be preserved. The
code is the specifications, and there is too much of it to replicate. This roadmap proposes an incremental
approach based on moving the codebase towards a better design.

Considerations
Deprecation
Just like the Wiki feature, the extensive use of trackers lead to extensive list filtering options. The rich
functionality is a blessing for the users, but the SQL queries generated bend the relational model too far
and cannot be executed efficiently. While they might work on smaller installations with little data or
traffic, larger ones will simply crumble under the weight.

The Unified Index can perform all the required filtering without causing abnormal stress to the database
server. Most of the stress on the server is caused by simple queries done during the indexing period. To
obtain the same functionality provided by the trackerfilter plugin, some work remains to be done in the
user interface, but the following refactoring will ease this work.

The trackerlist and trackerfilter plugins should be considered deprecated. As they act mostly on the
database directly, they should remain functional for a transition period, but moving to alternatives must
be the recommended option.

To be discussed : For long-term compatibility reasons those plugins might be kept but their code would, in
this case, simply call the LIST plugin with the right syntax. There is also another argument to keep them :
the user interface. To define how the list will be rendered and with which fields, it will probably still be
easier to use their own plugin editing popup until there is an elaborated Wizard/GUI to do this for the
LIST plugin.

LIST's parameters are easier to understand than the trackerlist ones. There are less edge cases to
understand.
There won't really be a direct mapping for all the parameters in trackerlist. The filters simply work
differently.

Freeze

Some work was performed in Tiki7, but much of what remains will be performed in trunk. Large changes
in trackerlib for Tiki7 need to be avoided as significant changes will happen in trunk. Minor changes in
the handlers can be performed to fix issues, but outside of those. Changes must be kept minimal to avoid
merging pains.

Already, fixes made for Tiki6 are hard to replicate in Tiki7 and trunk as the code structure is now very
different. Two distinct patches are required. As much as possible, large sites using trackers should be
encouraged to test with Tiki7 and migrate to the newer versions. Some issues are expected along the way,
but support for older trackers should be limited to critical issues to avoid resource split.

https://trunkdev.tiki.org/Unified-Index


dev.tiki.org 2024-05-20 Page 2 of 4

What was done

During TikiFestBoston and the weeks that followed, initial work was made on the trackers. As a first step,
trackerlib was converted to use the database helpers when possible, cleaning-up significant portions of
the code. As a second step, the rendering aspect of the fields was completely replaced. What was
previously tracker_item_field_input.tpl and tracker_item_field_value.tpl, along with various initialization
code scattered in multiple files, was entirely removed and replaced with handler classes for each field
type. The logic did not change significantly in the code. The effort was only to remove duplication and
collect the logic specific to each field in separate, isolated, entities. The weeks following the sprint
unveiled multiple issues that were caused by the refactoring, but many issues and inconsistencies were
resolved along the way.

Those changes have been made before the release of Tiki7 and will be used as a foundation for further
work.

Phase 1: Continue extracting field logic
Still, a lot of work remains to be done. During the refactoring, very little of the processing in trackerlib
has been removed. Many methods still contain field-specific logic, especially in item saving, retrieval,
import and export. Those methods need to be refactored further and delegate much of the work
performed to the handler classes.

In many cases, those methods use queries using joins to extract the tracker field information they need
and the data simultaneously. It should be noted that there are now facilities to extract the tracker
information and fields in a single entity that is preserved during runtime. Joins are no longer required as
the needed information is likely to be already retrieved using simpler queries.

Along the way, some of the logic in item storage should be extracted to events to reduce the complexity of
the method.

The benefits of extracted field logic:

A cohesive structure for the field types allowing to improve the user interface without breaking
everything else.
The ability to adapt the search filters based on the specific field types.
To allow customizers with niche requirements to have their own types with specific handling for
specific cases, and contribute back easily when desired.
To allow enabling or disabling of field types.

Phase 2: Separate Storage
In too many areas, the data structures used in the code are plainly those provided by the database, and
the arguments passed to functions that update those records are nothing more than the direct
parameters. These issues apply for multiple aspects of trackers:

Tracker definitions
Tracker field definitions
Item values

Using independent structures has multiple benefits for the code. Among others,

Testability would be increased by adding the possibility to run test suites on trackers without
accessing the database.
Reusability would be increased as different features in the code could use the tracker definitions to

https://trunkdev.tiki.org/Tiki7


dev.tiki.org 2024-05-20 Page 3 of 4

build forms.
The separation of concerns would be clear and easier to understand for new developers and what is
expected as a parameter would be more explicit.
People using Tiki as a framework would have a better toolkit to build on.
Encapsulated information prevents reliance on globals and the side effects that comes with it.

As the algorithms in trackers evolve to use those static structures, it would be possible to add even more
functionality, like revision history. Considering the tracker definitions and items are under version control,
comparing any version of an item would simply be about extracting the appropriate tracker structures and
comparing them.

Alternate storage methods also become an option in the future.

Phase 3: Clean up
There are many flags and options on field types at this time. The purpose and implementation of these
options will need to be revisited.

For example, many of them affect the default listings. Those values are part of a different concept: the
view, which has a purpose, but should be separated from the actual tracker definition. There is no reason
why it would not be possible to have multiple views for a single tracker and the current implementation of
Pretty Trackers is a reflection of this. Just like pretty trackers, the unified search also brings new
possibilities on how to format the results.

With categories and especially transitions, the purpose of the tracker status is challenged.

Phase N: Improve gradually
With the responsibilities better divided in the code, gradual improvement of the trackers will be possible.
Adding new field types will not be as painful. Address fields and multivalued fields come to mind. As the
search will be based on an independent indexer, it will not be required to keep the values clean in the
database. Serializing complex values will be an option as the indexer will handle it properly through the
field type handlers.

There is a lot of room for improvement which will be possible:

Additional, higher level field types
ex: address which would be smart about multi-line addresses and zip codes...

User interface enhancements on existing types
Additional right management on whom can modify the fields, handled globally rather than with a
series of exceptions
Improved logging, notifications and reporting
Improved connectivity to other features

Cross Feature Integration
MLP:The current integration of trackers and wiki could be strengthened and potential integrations with
calendar, spreadsheet, users, forum, and article.
examples:

the registration or user tracker is a common feature but the users table data is not associated with or
incorporated in the tracker data. A revised tracker feature could be "always on" and tracker#1 is the
user tracker.
Calendar items are also forms with a different ui. Why not instead just have a tracker#2 associated
with the default calendar objects.



dev.tiki.org 2024-05-20 Page 4 of 4

An integrated tracker could have an ObjectID field type, effectively joining it to the table of wiki pages,
articles, other trackers or items.

geoff: some detailed usage ideas on this topic are being added at Cross Feature Integration.

Closing Remark
How about changing the name of the feature altogether. The French translation already uses forms. The
term tracker is confusing at best as the feature outgrew the original purpose a long time ago.

Names of similar apps
Zoho Creator 
Google forms 
Drupal Content Construction Kit (CCK) 
JotForm 
DataGrid for Zend Framework 

Related links
Batch actions on the bug tracker
BugTrackerCleanup
bugtrackerv2_tpl
Calendar to Tracker association
Deployment of Category Jail for Trackers
DevTrackerStructure
Mathematical calculation tracker field
Merge Tiki Spreadsheet into Tiki Trackers
Mirror Trackers
Project Management - Tracker Integration
TKM Proposed Framework: Tracker Macros
Tracker Ajax Services
Tracker Calendar Timezones
Tracker Field Types
Tracker Field Visibility
Tracker Issues 7.x
Tracker performance
Tracker Query
Tracker Reports
Tracker Roadmap
Tracker Tabular
Tracker to Tracker association
Tracker-to-tracker Index List use case
TrackerField UI Revamp
TrackerFilter not working for Wishlist
Trackers
Trackers DB schema
Trackers Examples
Trackers Revamp
TrackerToGanttChart

alias
Trackers Roadmap

https://trunkdev.tiki.org/tiki-editpage.php?page=Cross+Feature+Integration
http://www.zoho.com/creator/
http://www.google.com/intl/en/google-d-s/forms/
http://drupal.org/project/cck
http://www.jotform.com/
http://zfdatagrid.com/grid/
https://trunkdev.tiki.org/Batch-actions-on-the-bug-tracker
https://trunkdev.tiki.org/BugTrackerCleanup
https://trunkdev.tiki.org/bugtrackerv2_tpl
https://trunkdev.tiki.org/Calendar-to-Tracker-association
https://trunkdev.tiki.org/Deployment-of-Category-Jail-for-Trackers
https://trunkdev.tiki.org/DevTrackerStructure
https://trunkdev.tiki.org/Mathematical-calculation-tracker-field
https://trunkdev.tiki.org/Merge-Tiki-Spreadsheet-into-Tiki-Trackers
https://trunkdev.tiki.org/Mirror-Trackers
https://trunkdev.tiki.org/Project-Management---Tracker-Integration
https://trunkdev.tiki.org/TKM-Proposed-Framework%3A-Tracker-Macros
https://trunkdev.tiki.org/Tracker-Ajax-Services
https://trunkdev.tiki.org/Tracker-Calendar-Timezones
https://trunkdev.tiki.org/Tracker-Field-Types
https://trunkdev.tiki.org/Tracker-Field-Visibility
https://trunkdev.tiki.org/Tracker-Issues-7.x
https://trunkdev.tiki.org/Tracker-performance
https://trunkdev.tiki.org/Tracker-Query
https://trunkdev.tiki.org/Tracker-Reports
https://trunkdev.tiki.org/Tracker-Roadmap
https://trunkdev.tiki.org/Tracker-Tabular
https://trunkdev.tiki.org/Tracker-to-Tracker-association
https://trunkdev.tiki.org/Tracker-to-tracker-Index-List-use-case
https://trunkdev.tiki.org/TrackerField-UI-Revamp
https://trunkdev.tiki.org/TrackerFilter-not-working-for-Wishlist
https://trunkdev.tiki.org/Trackers
https://trunkdev.tiki.org/Trackers-DB-schema
https://trunkdev.tiki.org/Trackers-Examples
https://trunkdev.tiki.org/Trackers-Revamp
https://trunkdev.tiki.org/TrackerToGanttChart
https://trunkdev.tiki.org/Tracker%20Roadmap

	Tracker Roadmap
	Considerations
	Deprecation
	Freeze

	What was done
	Phase 1: Continue extracting ﬁeld logic
	Phase 2: Separate Storage
	Phase 3: Clean up
	Phase N: Improve gradually
	Cross Feature Integration

	Closing Remark
	Names of similar apps

	Related links

