
dev.tiki.org 2024-05-20 Page 1 of 6

Tiki Unit Testing
This page describes how to write and run unit tests for Tiki, using PHPUnit. These tests are quite different
from the kinds of tests that can be done with TikiTest.

Unit tests, Integration tests and GUI level tests

In Tiki, we have three kinds of automated tests. This page refers to the first and second kind unit tests and
integration tests. For more information on GUI level tests, see Tiki Testing with Selenium.

Cheat sheet / run the tests for the first time as a developer
First, follow the instructions at the top of file lib/test/local.php.dist to create the test database and
configuration.

Then run the following to enter development mode. This will install and configure dependencies.

Enter Tiki Dev Mode

Finally, you should be able to either:

Run all tests

Run a specific test method

Run all the tests in a test class

Then make sure all the dev dependencies are installed.

Install/update dev dependencies

Finally, you should be able to either:

Run all tests

php console.php dev:configure

php phpunit

php phpunit --filter testNameOfTheTestMethodYouAreTryingToWriteOrFix

php phpunit --filter Tiki_Name_Of_TestClass

php temp/composer.phar --ansi install -d vendor_bundled --no-progress --prefer-dist -n

php lib/test/phpunit.php

https://trunkdev.tiki.org/TikiTests
https://trunkdev.tiki.org/Tiki-Testing-with-Selenium
https://gitlab.com/tikiwiki/tiki/blob/master/lib/test/local.php.dist

dev.tiki.org 2024-05-20 Page 2 of 6

Run a specific test method

Run all the tests in a test class

Unit tests
Unit Tests check the internals of certain classes, by exercising them in isolation from other classes and
other infrastructure (eg: Apache, MySQL). This is what PHPUnit is especially good for. These tests run
REALLY fast (the whole suite can be executed in less than a minute). Note however that those tests are
only applicable to classes that are modular enough to be exercised in isolation from everything else.
Generally speaking, that means the classes defined in lib/core.

Integration tests
Like unit tests integration tests check the internals of the system. The main difference is that they test one
component in the context of the whole system, and, in particular, may need the Tiki DB in order to run.
They are slower than Unit tests, but still faster than GUI level tests.

GUI level tests
These tests check the system by exercising it much in the same way that an end user might. This can be
done either with TikiTests or Selenium. This kind of test tends to be very slow and the whole suite may
take several hours to run. This type of test is not covered by this page. For more details, see Tiki Testing
with Selenium.

Installing and configuring
Installing PHPUnit
PHPUnit is installed automatically via composer, when you run setup.sh. This doesn't seem to be true for
trunk however. You need to cd vendor_bundled and run php ../temp/composer.phar install to install it
on trunk.

Configuring environment variables
Some of the tests (those which restore the Tiki DB to start states) need to invoke mysql command. For this
to work, you must make sure that the mysql command is part of your PATH.

Configuring a database for PHPUnit testing
Obviously we don't want our tests to mess up your actual production database. To prevent that, unit tests
run on their own DB, which you have to create. You do this as follows.

First you have to create a new database. After you have to copy the file lib/test/local.php.dist to
lib/test/local.php and edit it changing the default values to the values that match your environment.

The first time you run the test suite it will automatically populate the database. On subsequent runs it will
update the database if needed.

Running existing tests

php lib/test/phpunit.php --filter testNameOfTheTestMethodYouAreTryingToWriteOrFix

php lib/test/phpunit.php --filter Tiki_Name_Of_TestClass

https://trunkdev.tiki.org/TikiTests
https://trunkdev.tiki.org/Tiki-Testing-with-Selenium
https://trunkdev.tiki.org/Tiki-Testing-with-Selenium
https://trunkdev.tiki.org/Tiki-Testing-with-Selenium

dev.tiki.org 2024-05-20 Page 3 of 6

Once you have installed PHPUnit, you can run all the existing unit tests or subsets of them, as described
in this section.

Ignoring pre-existing issues
In an ideal world, everyone would run the tests all the time, and would fix broken tests before doing a
commit. But not everyone in our community does that, and therefore, it's quite common for trunk to have
hundreds of broken tests that nobody knows how to fix.

When you run the tests, this makes it hard to tell if any of those failures or errors might be new, and have
been introduced by a change you just made.

The phpunit_with_baseline.php script was designed to address this issue. Basically, it runs the tests and
then compares the list of errors and failures to those of a baseline. It then only reports issues that are
"new" and were not already present in that baseline.

To get more information on the usage of this script, do:

cd lib/test
php phpunit_with_baseline.php --help

Of particular interest is the --phpunit-options option. This is a string that will be passed on to phpunit.
To know what the possibilities are for that option, do:

php vendor_bundled/vendor/phpunit/phpunit/phpunit --help

Note April 2016, Tiki 15:
The only way i could get these tests to run was to use

to run them all, or this for a subset

Also i have to create and update the test database using the normal installer - everything seems quite
broken currently �

Setting up testing in PhpStorm
If you use PhpStorm you can use these instructions to set up PHPUnit to run on Tiki here: Tiki Unit
Testing with PhpStorm

Setup the test database

You need to have a copy of local.php in the directory lib/test. You can create it by coping
lib/test/local.php.dist and customizing it accordingly.

Run the tests

To run all the unit and integration tests (obsolete):

php ../../bin/phpunit -c phpunit.xml

php ../../bin/phpunit -c phpunit.xml ./core/WikiParser

https://trunkdev.tiki.org/Tiki-Unit-Testing-with-PhpStorm
https://trunkdev.tiki.org/Tiki-Unit-Testing-with-PhpStorm

dev.tiki.org 2024-05-20 Page 4 of 6

To run all the unit and integration tests on trunk (replace php with e.g. php71 if you use different php-cli
versions):

You may also exclude some tests like the GoogleTranslate tests, or the GUI level tests groups.

GoogleTranslate tests don't work if you need to specify a web proxy, because they get some data from
Google translation tool.
GUI level tests, require a selenium installation and a configuration file for selenium. You may not have
this available.

So, if you don't want to run one of those groups, you just have to use the --exclude-group option, like this:

Note that this assumes that a phpunit @group directive has been inserted in the source file of those tests.

You can also execute only tests whose names match a certain expression. For example:

Will only run tests whose name contains string Importer1.

phpunit_with_baseline --phpunit-options "--filter Importer"

Sometimes, PHPUnit fails and does not provide you with sufficient details to allow you to know exactly
where the error occured (for example, sometimes it doesn't even tell you in which TestCase the error
happened). You can get more details by using the --verbose option. For example:

phpunit_with_baseline --phpunit-options "--verbose"

Writing new tests

Adding a new test function to an existing TestCase
If there is already a TestCase class (i.e. a class whose name ends with Test somewhere under lib/test)
where your new test might fit in, then all you have to do is to create a new method of that class whose
name starts with "test". For example:

When you run the tests again, then you should see that test_HelloWorld was run and failed. Just change
the content of that test so that it implements the actual tests.

Adding a new TestCase
If there isn't already a TestCase class where your new test might fit in, then you need to create a new

cd lib/test php phpunit_with_baseline

php vendor_bundled/vendor/phpunit/phpunit/phpunit --colors=always

cd lib/test phpunit_with_baseline --phpunit-options "--exclude-group gui,GoogleTranslate"

public function test_HelloWorld() { $this->fail("Forcing failure to see if this TestCase is actually
loaded"); }

dev.tiki.org 2024-05-20 Page 5 of 6

TestCase class. This is done slightly differently for the different types of tests.

Let's start with an example for a unit tests. Say you want to create a class DummyUnitTest and want to
put it under lib/core/Foo/Bar. All you need is to create a file lib/core/Foo/Bar/DummyUnitTest.php with the
following content:

Note:

Foo_Bar_ prefix for the name of the class
This allows PHPUnit to automatically know that this class is located in a directory Foo/Bar
located somewhere on the include path.

The class name and the file ends with Test
@group unit

This allows exclusion of unit tests using the --exclude-group option of PHPUnit

Creating a TestCase for an integration test is very similar, except that:

You would put the file in a subdirectory of lib, instead of lib/core
Set @group to 'integration' instead of 'unit'

For creation of GUI level tests, details will follow.

Creating a new GUI level test
Details will follow.

Troubleshooting

PHPUnit hangs up
If you invoke PHPUnit and nothing at all happens, it's probably because your XAMP services are not
started. Although you are running the tests from a command line, some of the tests may actually require
some services like SQL to run.

Fatal error: Allowed memory size of NNN bytes exhausted
Running thousands of tests tends to consume much more memory than your average web PHP script,
especially if you use a version of PHP that does not have garbage collection.

So you might get the above error. The way to address that is to increase your the memory_limit in your
php.ini file.

Note that you have to make sure you use the proper php.ini file (there are often more than one on a given
computer). To find out which php.ini file is used when you run PHPUnit, do this in a shell window:

<?php /* * @group unit */ class Foo_Bar_DummyUnitTest extends TikiTestCase { function setUp() {
parent::setUp(); /* * Put your own setup code here. * Make sure you keep the above call to the parent
setUp() * in case the parent test case needs to do some * setup also. */ } function tearDown() { /* * Put
your own setup code here. * Make sure you keep the call below to the parent tearDown() * to ensure
that the parent test case will teardown * anything it might have created. */ parent::tearDown(); } public
function test_HelloWorld() { $this->fail("Forcing failure to see if this TestCase is actually loaded"); } }
?>

dev.tiki.org 2024-05-20 Page 6 of 6

The file mentioned after "Loaded Configuration File =>" is the one you want. Just edit the file and
increase the memory limit. If this is a development machine, then you can increase it all you want, but be
careful if you are testing on a machine that is also used to deploy a Tiki site, and if the php.ini used by
PHPUnit is also the one used by Apache, then don't increase it too much.

Tried to run an acceptance test without an initial database dump
If you get this error, it means you tried to run some GUI level tests, but are not properly setup to run
them. See Tiki Testing with Selenium#Database_Issues for details.

In order to run GUI level tests,, you must have snapshots of databases pre-configured for different tests. If
you do not have those snapshots, the tests will not run, and all other tests will not run either.

A way around this problem is simply to exclude the GUI level tests using the --exclude-group option:

Failing tests for Multilingual_MachineTranslation_GoogleTranslateWrapperTest
This is probably due to the fact that you are using a web proxy. For some reason, the Google translation
tool does not work from behind a proxy.

If you are running the tests behind a proxy, you can exclude those tests as follows:

WARNINGS reported as FAILURES
If your test executes code that raises a warning, this warning will get reported as a PHPUnit failure.
That's because in phpunit.xml, we configure PHPUnit with convertWarningsToExceptions. That's because
we want to be told about warnings and address them before they turn into actual bugs.

In some cases the code works just fine in spite of the warning, and getting rid of the warning would be too
complicated to be worth it.

In those situations, you may want to address the issue by temporarily disabling E_WARNING just for that
one bit of code, and just if you are running under tests. For example:

alias
Unit Tests
Unit Testing

php -i | grep ini

phpunit --exclude-group gui .

phpunit --exclude-group GoogleTranslate .

do { $old_error_reporting_level; if (defined('TIKI_IN_TEST')) { $old_error_reporting_level =
error_reporting(E_ERROR | E_PARSE); } require_once("renderer_$function.php"); if
(defined('TIKI_IN_TEST')) { error_reporting($old_error_reporting_level); } } while (false);

https://trunkdev.tiki.org/tiki-editpage.php?page=Tiki+Testing+with+Selenium%23Database_Issues
https://trunkdev.tiki.org/Tiki%20Unit%20Testing
https://trunkdev.tiki.org/Tiki%20Unit%20Testing

	Tiki Unit Testing
	Unit tests, Integration tests and GUI level tests
	Cheat sheet / run the tests for the ﬁrst time as a developer
	Unit tests
	Integration tests
	GUI level tests

	Installing and conﬁguring
	Installing PHPUnit
	Conﬁguring environment variables
	Conﬁguring a database for PHPUnit testing
	Running existing tests
	Ignoring pre-existing issues
	Setting up testing in PhpStorm
	Setup the test database
	Run the tests

	Writing new tests
	Adding a new test function to an existing TestCase
	Adding a new TestCase
	Creating a new GUI level test

	Troubleshooting
	PHPUnit hangs up
	Fatal error: Allowed memory size of NNN bytes exhausted
	Tried to run an acceptance test without an initial database dump
	Failing tests for Multilingual_MachineTranslation_GoogleTranslateWrapperTest
	WARNINGS reported as FAILURES

