
dev.tiki.org 2024-05-20 Page 1 of 2

How to figure out which commit causes a bug
Something worked. And now it doesn't. This is called a regression.

This happens. Most commits fix/improve things, but every once in a while, something breaks. Sometimes,
by fixing a bug, we introduce another. Tiki has so many features that it's difficult to test everything. Lots
of eyeballs and good bug reporting is essential

You'd like to report the bug and inform the right person. But how to figure out who introduced the
problem and when?

If you are using Git

The following actions must be done on a working copy (usually local) of your Tiki after all commits and
conflicts are solved (check with git status if everything is up-to-date)

You can use git bisect to find out what commit is the cause of the regression.
The git bisect command requires just two information to start:

A revision where things were definitely good.1.
A revision where the bug is present.2.

Now, git bisect will help to track the bug somewhere between the "bad" and "good" commits. It will
splits the range of commits between "good" and "bad" in half - and checks out a commit in the middle.

For each iteration you will have to test and confirm if the bug is still there or gone.

In practice (sample)
Go in your terminal, shell, etc. and enter the following where
10df1cb84df250eaae72cef31aca79a32dffef87 is a commit where the bug is present; bad and
165cc018e5dd74485b7e6aa13b53361db1fb3596 is a commit where the bug is not present; good and .
Note you can use the number or the commit SHA.

start Git Bisect

declare the commit that has the bug

declare the commit that doesn't have the bug

The output from the last command should look like this:

git bisect start

git bisect bad 10df1cb84df250eaae72cef31aca79a32dffef87 //If it is the last version you can use HEAD

git bisect good 165cc018e5dd74485b7e6aa13b53361db1fb3596

Bisecting: 3 revisions left to test after this (roughly 2 steps)
[e0375ad20652b1c5974a634809b269d68d6902a5] [FIX] bs4: Use btn-secondary for tracker item
preview buttons, and btn-link for cancel/close like wiki page edit. (missed from 390f4082, thanks
@Jyhem

https://trunkdev.tiki.org/Regressions


dev.tiki.org 2024-05-20 Page 2 of 2

Now you need to go back to you browser and check if, using this version, the bug is there or not.
If it is there continue tracking using

continue the search

If the bug is not there continue tracing using

continue the search

It will repeat the process (splitting commits in half and on) until you are able to successfully singled out
the bad commit!

Once it is done don't forget to reset your working copy

stop Git Bisect and reset

The output should be something like that:

Related
https://mozilla.github.io/mozregression/ 
http://www.selenic.com/mercurial/hg.1.html#bisect 
https://launchpad.net/bzr-bisect 
http://www.monotone.ca/docs/Bisecting.html 
http://www.fossil-scm.org/xfer/help/bisect 
Subversion
https://quality.mozilla.org/docs/bugzilla/guide-to-triaging-bugs-for-firefox/finding-a-regression-window
/ 

alias
Bisect
SVN-Bisect
SVN Bisect
Git Bisect
How to figure out what revision number causes a bug

git bisect bad

git bisect good

git bisect reset

Previous HEAD position was e0375ad206 [FIX] bs4: Use btn-secondary for tracker item preview
buttons, and btn-link for cancel/close like wiki page edit. (missed from 390f4082, thanks @Jyhem)
Switched to branch 'bernardsfez_23x' Your branch is up to date with 'origin/bernardsfez_23x'.

https://mozilla.github.io/mozregression/
https://mozilla.github.io/mozregression/
http://www.selenic.com/mercurial/hg.1.html#bisect
http://www.selenic.com/mercurial/hg.1.html#bisect
https://launchpad.net/bzr-bisect
https://launchpad.net/bzr-bisect
http://www.monotone.ca/docs/Bisecting.html
http://www.monotone.ca/docs/Bisecting.html
http://www.fossil-scm.org/xfer/help/bisect
http://www.fossil-scm.org/xfer/help/bisect
https://trunkdev.tiki.org/Tiki%20Version%20control%20history
https://quality.mozilla.org/docs/bugzilla/guide-to-triaging-bugs-for-firefox/finding-a-regression-window/
https://quality.mozilla.org/docs/bugzilla/guide-to-triaging-bugs-for-firefox/finding-a-regression-window/
https://quality.mozilla.org/docs/bugzilla/guide-to-triaging-bugs-for-firefox/finding-a-regression-window/
https://trunkdev.tiki.org/How%20to%20figure%20out%20which%20commit%20causes%20a%20bug
https://trunkdev.tiki.org/How%20to%20figure%20out%20which%20commit%20causes%20a%20bug
https://trunkdev.tiki.org/How%20to%20figure%20out%20which%20commit%20causes%20a%20bug
https://trunkdev.tiki.org/How%20to%20figure%20out%20which%20commit%20causes%20a%20bug
https://trunkdev.tiki.org/How%20to%20figure%20out%20which%20commit%20causes%20a%20bug

	How to ﬁgure out which commit causes a bug
	If you are using Git
	In practice (sample)


	Related

