
dev.tiki.org 2024-05-20 Page 1 of 2

Freeze and Slush
This is a draft (more of a collection of ideas than a plan/guideline)

As a growing community, to be efficient, we must have a common understanding of Where to Commit, but
we must also get a common understanding of When to commit.

This page will attempt to describe a consensus on when to commit so we can all converge and be ready to
release according to the Lifecycle.

See also: Where to commit

Reverse-planning / Work-Back Schedule
x time before, what needs to be done

This part needs to be much precise

when what

1 month before technical release (feature-freeze) where all translations (with automatic syntax
checking) and promotional material can be prepared.

2 months before All minor new features should be in trunk so they can be tested in time for the release.

3 months before All major new features should be in trunk so they can be tested in time for the release.

The big underlying questions:

Will it be good enough in time for the next scheduled release?
What are the risks of introducing regressions? The closer we are to the release, the lower the risk
your contributions should be

In case of doubt, reach out to the release coordinator. These are questions that come to mind:

If you do introduce a bug, will we find quickly and will you fix very quickly? (ex.: within 48h) (or are
you the dump-and-disappear-and-let-someone-else-cleanup-my-mess type of developer)
If you do introduce a bug, is it for something localized (ex: change css for one theme) ? or can it affect
everyone (ex.: login process)
Are you an experienced developer and you "know" where the risk areas are?
Are you affecting a lot of files?

Did you test every single file? (mass search and replace sometimes go wrong)
Which can make it difficult to review
Which can make the merge from stable to trunk more difficult

Are you introducing a database change?
In general, DB changes should be done early in the process

Has this code been used in production for a reasonable time-frame?

Types of changes
Major changes that affect the whole application.
These should be done fairly early in a cycle. So we have several months to iron-out all the issues. A
backward-compatibility layer should be provided. Ex.: Permission Revamp, new modules system, etc. It's a
good idea to start these in an Experimental branch.

https://trunkdev.tiki.org/Where-to-commit
https://tiki.org/Tiki%20Versions
https://trunkdev.tiki.org/Where-to-commit
http://thedrowningentrepreneur.blogspot.com/2008/02/reverse-planning-use-it-for-business.html
https://en.wikipedia.org/wiki/Risk_management
https://trunkdev.tiki.org/Permission-Revamp
https://trunkdev.tiki.org/Experimental%20Branches

dev.tiki.org 2024-05-20 Page 2 of 2

Major change to existing features.
How will upgrades be handled?

New self-contained features
These can arrive quite late. If they are not ready for prime-time, just tag as experimental.

Inspiration
https://wiki.gnome.org/ReleasePlanning/Freezes

Related
Version Lifecycle
When to Branch
When to release
Where to commit
Tools for Merge Request reviewers

Alias
Freeze
Slush
Risk Freeze
Bug fix vs New feature

https://wiki.gnome.org/ReleasePlanning/Freezes
https://wiki.gnome.org/ReleasePlanning/Freezes
https://trunkdev.tiki.org/Version-lifecycle
https://trunkdev.tiki.org/When-to-branch
https://tiki.org/When%20to%20release
https://trunkdev.tiki.org/Where-to-commit
https://trunkdev.tiki.org/Tools-for-Merge-Request-reviewers
https://trunkdev.tiki.org/Freeze%20and%20Slush
https://trunkdev.tiki.org/Freeze%20and%20Slush
https://trunkdev.tiki.org/Freeze%20and%20Slush
https://trunkdev.tiki.org/Freeze%20and%20Slush

	Freeze and Slush
	Reverse-planning / Work-Back Schedule
	Types of changes
	Major changes that aﬀect the whole application.
	Major change to existing features.
	New self-contained features

	Inspiration
	Related
	Alias

