
dev.tiki.org 2024-05-21 Page 1 of 4

Filtering Best Practices
Overview
To prevent itself from XSS vulnerabilities, Tiki applies a very broad sanitization filter on all input. While
the technique is mostly safe, it is well known to cause undesired side effects on the end users. This form of
sanitization has been present in Tiki for a very long time without problems. However, more aggressive
filters have been in place since 2.0 and those have raised a large number of bug reports. Broad
sanitization is also very expensive in processing time.

Beginning with 3.0, more control over the filtering is possible. The very broad filter is now used as a last
resort in cases where no specific filters are specified. Specific filters are even more secure and can
significantly improve performance.

Two types of filters are available:

Declarative filters, which declare what are the expected data types before sanitization is performed.
Just in time filters, which defer filtering until the variable is used.

Declarative Filtering
Declarative filtering works by attempting to apply a declared set of rules on the input. Once a rule applies,
the remaining part of the sequence is dropped. Matching rules can be of three different types:

Static key lookup applies the rule if there is an exact match between the key name and the provided
one.
Key pattern lookup applies if the key name matches a provided regular expression.
Catch all applies to everything reaching it.

The rules can have two different effects:

They can filter the value associated with the matching key or
they can unset the key altogether and destroy the value.

Each script file is expected to define the static key and key pattern rules for their own input. Optionally,
they could add a unset catch-all clause to the set of rules if every possible input is declared. Doing so
would provide the highest possible level of security. Before sanitization occurs, a catch-all clause to the
broad XSS prevention filter is added automatically. Scripts are now allowed to set a default catch-all filter
clause.

Declarative filters are defined by setting a global variable before inclusion of tiki-setup.php or tiki-
setup_base.php.

Sample declaration

For each row, the key is the rule type and the value is the creation argument. The creation argument
varies. Here are the available rule types:

staticKeyFilters applies the specified filter for each key. The input is a map in which the key is the

<?php $inputConfiguration = array(array('staticKeyFilters' => array('page' => 'pagename', 'content'
=> 'wikicontent',)), array('staticKeyFiltersForArrays' => array('categoryId' => 'digits',)), array(
'staticKeyUnset' => array('page_id')),); require_once 'tiki-setup.php'; // ...

dev.tiki.org 2024-05-21 Page 2 of 4

input key and the value is the filter. Initializing an array here will cause an error.
staticKeyFiltersForArrays is a variant of the previous one. Rather than applying the filter directly
on the value, it traverses arrays recursively and applies the filter on end-elements.
staticKeyUnset removes the keys listed in the argument. The argument is a simple array of keys.
keyPatternFilters applies a filter on each key matching a PCRE. The creation argument is the
pattern as the key and the filter as the value.
keyPatternFiltersForArrays is a variant on the previous one, analogous to
staticKeyFiltersForArrays.
keyPatternUnset unsets all keys matching a PCRE. The creation argument is a simple array of
patterns.
catchAllUnset removes all keys not declared before. Use null as the argument. Declaring this is
advisable whenever technically possible.

If more complex filters are required, tiki-filter-base.php can be included prior to the declaration. This
inclusion will set the Tiki include paths. More files can then be included. More complex filters could
require instanciation of filter objects. A filter could be another DeclFilter instance to handle structured
input.

Declarative filters in plugins

As an addition, the plugin description function must now provide the filters to use on each value passed to
the plugin. Wiki syntax can be considered safe, but the plugins may cause security threats if the input is
not handled correctly. Unspecified filters will apply the XSS filter.

Sample plugin declaration

Use a separator when there are more than one possible values
If you can have many possible values, use a separator:

Just In Time Filtering

In many cases in Tiki, it's impossible to define the data type of the input variable before runtime. The
applicable filter may depend on other input or various settings. Examples of this are the wiki page
content, which can either be HTML or wiki syntax, or tracker field values which depend on the tracker
field type. For all these cases, JIT filters can be used. The default filtering, in this case, is also the broad
XSS prevention filter.

<?php function wikiplugin_example_info() { return array('name' => tra('Example Plugin'),
'description' => tra('Does nothing'), 'body' => tra('Some short text string'), 'filter' => 'striptags',
'params' => array('height' => array('required' => false, 'name' => tra('Height'), 'description' =>
tra('Box height'), 'filter' => 'digits',),),); } /* Using the above definition, this call:
{EXAMPLE(height=123abc width=123abc)}Hello
World{EXAMPLE} Would produce the following plugin call: wikiplugin_example('Hello World',
array('height' => '123')); Notice that width is gone because undeclared. HTML tags were removed by
striptags and height only contains '123'. */ ?>

'filter_category' => array('name' => tra('Filter category'), 'description' => tra('Limit search results to
a specific category. Enter the comma separated list of category IDs to include in the selector. Single
category will display no controls.'), 'filter' => 'digits', 'separator' => ',',),

dev.tiki.org 2024-05-21 Page 3 of 4

Before performing sanitization, a pristine copy of the original input is preserved in JitFilter objects. While
the data is not accessible directly, no filtering is made on it before it's accessed. The filters can then be
defined at runtime when the data type is known. When JitFilter is used to access input, the input keys
should be unset by the declarative filters for increased security and performance.

The JitFilter objects are accessible through $jitGet, $jitPost, $jitCookie and $jitRequest in the global
scope.

JitFilter can be used in multiple ways.One interface is meant to act as closely as possible to an array. It
was built during the first effort.

Sample usage in array mode

When used in array mode, the JitFilter object applied the filters when an end-node in the array is reached.
Otherwise, another instance of JitFilter is returned. The filters must be specified before the property is
accessed (it's safe to change the filter afterward and re-request the data). The asArray() method on the
filter can be used to return a completely filtered array instead of an object.

Because declarative filters cover the predefinition of parameters in most cases, a different way of
accessing filtered values can be used.

Sample usage in object mode

This second technique provides the same results but skips the definition statements.

Available Filters

The two techniques above use a common set of filters. Filters can be provided as a filter object instance
(implementing Zend_Filter_Interface) or a filter name, which will be resolved based on rules defined by
Tiki. The mapping between names and filters can be found in lib/core/TikiFilter.php . These are very
likely to evolve.

Using names allow replacing the filter's implementation. Some shorthand generic filters are available, like
'alnum', 'alpha', 'digits'. However, higher level concepts like 'groupname', 'username', 'pagename',
'wikicontent' are desired, even if they are only alias' of other filters at the moment of definition.

Roadmap

<?php $jitRequest->replaceFilters(array('content' => 'wikicontent', 'page' => 'pagename',
'categories' => 'digits',)); $page = $jitFilter['page']; // Filter applied $content = $jitFilter['content']; //
Filter applied // Array access A $categs = array(); foreach($jitFilter['categories'] as $categ) // Filter
applied on each element $categs[] = $categ; // Array access B (recommended) $categs =
$jitFilter->asArray('categories'); // Array access C $categs = $jitFilter['categories']->asArray(); ?>

<?php // Page name A (recommended) $page = $jitFilter->page->pagename(); // Filter 'pagename'
applied // Page name B $page = $jitFilter->page->filter('pagename'); // Page name C $page =
$jitFilter->page->filter(new Zend_Filter_StripTags); $content = $jitFilter->content->wikicontent(); //
Filter 'wikicontent' applied // Array access A (recommended) $categs = $jitFilter->categories->digits();
// Applied on values, proper array returned // Array access B $categs = $jitFilter['categories']->digits();
?>

https://gitlab.com/tikiwiki/tiki/-/blob/master/lib/core/TikiFilter.php

dev.tiki.org 2024-05-21 Page 4 of 4

Long term goals
Use declarative filters on all input
Unset all non-declared input
Use JIT for input types that cannot be determined at sanitization time

Want to help?

Specifying filters in Tiki is a huge task. You can help by:

Specifying filters on plugin body and arguments
Converting the script pages to use the new filtering techniques, which includes:

Specifying the declarative filters
Modifying the code to use jit filters when needed

Testing, testing, testing

Alias
FilteringBestPractices

https://trunkdev.tiki.org/Filtering%20Best%20Practices

	Filtering Best Practices
	Overview
	Declarative Filtering
	Declarative ﬁlters in plugins

	Use a separator when there are more than one possible values
	Just In Time Filtering
	Available Filters
	Roadmap
	Long term goals

	Want to help?
	Alias

