
dev.tiki.org 2024-05-20 Page 1 of 3

Database Access
Tiki has a database query layer to handle queries affecting a single table. The layer builds the SQL based
on arguments rather than having to concatenate strings. The resulting code is cleaner. SQL will still be
used in Tiki libraries, but should be reserved for cases where relational logic is needed or advanced
features provide a significant benefit.

Complex listings with multiple filters that are targeted towards end-users should use Unified Index instead
of direct SQL.

The database layer works at the table-level, but does not perform any validation on the fields. It is only
provided as a convenience.

The table class can be obtained through TikiDb and TikiDb_Bridge instances through the
table($tableName) method.

Insert a row
Inserting records is a common task and the SQL syntax requires enumerating the fields and then the
values, leading to common mistakes with missing arguments. With parameter bindings, all those values
are question marks that must be synchronized with bind variables. The table access class allows to
provide an array containing key-value pairs and will build the SQL accordingly.

Insert a record

Deleting records
The table class does not abstract much from SQL on purpose. It only provides facilities to be more explicit
about the task to be performed. Deleting records requires to build conditions to match the records. Just
like insert queries, those conditions are provided as arrays.

Delete a record

By default, update and delete queries built will use LIMIT 1 to avoid excessive damage from being caused
by bad queries. When multiple records need to be deleted, deleteMultiple(array $conditions) can be used
to remove the limitation.

Multiple conditions can be provided resulting in AND matching. For conditions that require different
operators than equality, various expressions can be used. Expressions are described in detail further down
as they are shared between different methods.

Delete a record

In the above, the generated condition will be `expiry` < 1234567890 AND `session_id` = "1234567890",
or something equivalent.

<?php $pages = $tikilib->table('tiki_pages'); $id = $pages->insert(array('pageName' => 'HelloWorld',
'data' => 'Content here', // More fields here...)); // $id contains the auto-increment ID.

<?php $pages = $tikilib->table('tiki_pages'); $pages->delete(array('page_id' => 42,));

<?php $sessions = $tikilib->table('tiki_sessions'); $sessions->deleteMultiple(array('expiry' =>
$sessions->lesserThan(time()), 'session_id' => session_id(),));

https://trunkdev.tiki.org/Unified-Index

dev.tiki.org 2024-05-20 Page 2 of 3

Updating records
To update records, the data to be updated and the conditions matching the rows must be provided. Just
like for delete, update will have a limitaiton on one updated record by default. updateMultiple(array
$data, array $conditions) can be used instead.

Some expressions are also provided to perform non-direct assignments.

Delete a record

In the above, the hits field will be set to `hits` = `hits` + 1 while the other field will simply be assigned a
value.

Retrieve data
Depending on what information is desired, multiple options are available. The complete function granting
access to all functionality is fetchAll(...). However, some common situations can benefit from a more
compact form. The available methods are:

fetchBool(array $conditions) : Returns true on a match, or false otherwise. Perfect as a lightweight
query or for use in a control statement
fetchCount(array $conditions) : Provides the result count only
fetchOne($field, array $conditions) : Provides a single value coming from one record
fetchColumn($field, array $conditions, $maxRecords = -1, $offset = -1, $sort = null) :
Provides all the matched values from a single column
fetchMap($keyField, $valueField, array $conditions, $maxRecords = -1, $offset = -1, $sort =
null) : Retrieves the two values from the table and generates a map from the key and the value
fetchRow(array $fields, array $conditions) : Retrieve the selected fields from a single row
fetchFullRow(array $conditions) : Retrieve all fields from a single row
fetchAll(array $fields, array $conditions, $maxRecords = -1, $offset = -1, $sort = null) :
Fully-customizable fetch providing an array of associative arrays.

Common pagination case

The sort argument can be provided as an array containing multiple sort options or a generic expression.

The field lists can contain strings for field names or expressions (see below). The all() expression can also
be used instead of an array for SELECT *.

Expressions
The table class will use strings and scalar values to perform common operations like assignation and
equality conditions. However, many situations step outside those boundaries. For those, expressions are
provided. Essentially, expressions are SQL fragments with bound variables.

expr($fragment, array $arguments = array())

<?php $pages = $tikilib->table('tiki_pages'); $pages->update(array('last_visit' => 'foobar', 'hits' =>
$pages->increment(1),), array('page_id' => 42,));

<?php $pages = $this->table('tiki_pages'); $conditions = array('pageName' => $pages->like('User%'),
); $result = $pages->fetchAll(array('pageName', 'description', 'hits'), $conditions, $maxRecords,
$offset, array('pageName' => 'ASC')); $cant = $pages->fetchCount($conditions);

dev.tiki.org 2024-05-20 Page 3 of 3

Most generic usage, allows to insert SQL in many places.
In update for the data, they are used for the values.
In conditions, they represent the whole condition.
In a select query, they represent a single field.
An expression can be used instead of the sort array to replace the entire order by argument.
Within the fragment, $$ will be replaced by the field for conditions.
All other expressions are just shorthands for this one.

Condition expressions
lesserThan($value)
greaterThan($value)
like($value)
unlike($value)
contains($value)
not($value)
exactly($value) (binary safe compare)
in(array $values)
between(array $values) Must pass 2 values. Will match the values and the range between them.

Field expressions
count()
sum($field)
max($field)
all() (for all fields, not a specific field, returns an array of expressions)

Update value expressions
increment($count)
decrement($count)

Example of expressions: in() & sum()

<?php $files = $this->table('tiki_files'); $conditions = array(); if (! empty($galleryId)) { $galleryIds =
array(); $this->getGalleryIds($galleryIds, $galleryId, 'list'); $conditions['galleryId'] =
$files->in($galleryIds); } return $files->fetchOne($files->sum('filesize'), $conditions);

	Database Access
	Insert a row
	Deleting records
	Updating records
	Retrieve data
	Expressions

