
dev.tiki.org 2024-05-20 Page 1 of 3

Continuous upstream
Page name could change when concept becomes clearer �

Context
As per Where to commit, new features generally shouldn't be committed to the stable branch. They
belong in trunk.

You are running a Tiki, which is somewhat critical and/or has a lot of features and it takes quite a
bit of time to test everything. You don't want down time and you need features to be stable. So
you want to run a stable branch of Tiki (not trunk).
You are working on new features, which you want to contribute to trunk
You would like some of these new features as soon as possible available to your site and not wait
up to 6 months for trunk to become the next stable version of Tiki.
You also have some non-upstreamable stuff (a theme and perhaps some things that are very
specific to this project and not interesting for the community at large)

You want to avoid custom code as much as possible and want each major upgrade to be as smooth as
possible because all code/features has been upstreamed to trunk (Commit early, Commit often)

Examples
Running a SaaS service, where releases of new features can be done every few weeks.

Workflow trunk to stable
Code in trunk and cherry-pick backports

Pros
This is how the workflow should be.
New code takes advantage of new trunk features
Helping to keep trunk stable

Cons
Trunk bugs (which are to be expected) can slow you down
Sometimes, backport is messy because it involves something else only in trunk

Instances
example.org: live site

stable branch
+ own code already committed to trunk and backported locally
+ own code that is not destined to be upstreamed (ex.: theme)

updated regularly to tip of stable branch
staging.example.org

Generally same code and data as live site, but with a few recent changes that need to tested
next.example.org: take production site and pre-dogfood server script (for code, not just data like
current script does).

Important wish: TRIM make clone (mirror) and make cloneandupdate or cloneandupgrade (pre-dogfood
server)

Steps
We will need to write scripts to automate this more, but here are steps for now.

https://trunkdev.tiki.org/Where-to-commit
https://trunkdev.tiki.org/item5937
https://trunkdev.tiki.org/item5937


dev.tiki.org 2024-05-20 Page 2 of 3

Make sure your system requirements are sufficient to run trunk -> Server Check1.
Update your production code to the tip of the stable branch2.

Check if the update would cause conflicts
Check that nothing obvious is broken in the files that have been changed
You now have the tip of stable branch, along with your locally managed modifications on your site

Run pre-dogfood server script to get latest trunk and latest data on next3.
If this was run on a cron job, we could get an early warning with Check if the update would cause
conflicts

Run script to make staging server be identical to production4.
Test the feature you are about to code on5.

If it's broken: How to figure out which commit causes a bug The sooner you do this, the less work
it is.

Work on next. Make your feature.6.
If it involves modifying data (including prefs), you can use, see: System Configuration or
Configuration Management and Systems Orchestration. You need this because your data will be
wiped at the next pre-dogfood upgrade

Once you are pleased with it, merge all modified files to the staging server7.
Test. If all is good commit to trunk (in one commit, it makes it easier), and backport this commit to8.
your stable site, along with any content / configuration changes

Your prod and staging should be identical at this point. A script to double-check this would be
useful.

Workflow stable to trunk
Code on stable branch and merge to trunk

Pros
Development on a more stable environment: fewer trunk bugs (which are to be expected) that can
slow you down

Cons
Not taking advantage of new trunk features
Not helping much to keep trunk stable

Instances
Similar to above

Steps
Make sure staging and next are up to date, in code and data1.
Code on staging2.
Test3.
Merge changes to next4.
Test5.
Commit to Tiki trunk6.
Backport this commit to live site7.
Run again scripts to update staging and next8.

Related
Red Hat is a company with a policy we call “upstream first” 
https://trunkbaseddevelopment.com/ 

https://trunkdev.tiki.org/Server-check
https://trunkdev.tiki.org/Check-if-the-update-would-cause-conflicts
https://tiki.org/pre-dogfood%20server
https://trunkdev.tiki.org/Check-if-the-update-would-cause-conflicts
https://trunkdev.tiki.org/Check-if-the-update-would-cause-conflicts
https://trunkdev.tiki.org/How-to-figure-out-which-commit-causes-a-bug
https://doc.tiki.org/System%20Configuration
https://trunkdev.tiki.org/Configuration-Management-and-Systems-Orchestration
http://community.redhat.com/blog/2015/03/upstream-first-turning-openstack-into-an-nfv-platform/
https://trunkbaseddevelopment.com/
https://trunkbaseddevelopment.com/


dev.tiki.org 2024-05-20 Page 3 of 3

Snapshots from trunk
Dependency Injection
http://12factor.net/dev-prod-parity 
Pre-Dogfood Server
Configuration Management for Tiki Projects
Divergent Preferences in Staging Development Production
Continuous Integration
Using Git with Tiki
SUMO Upstream Process
Translation upstream
Semi-automatic merging period
https://github.blog/2023-04-06-building-github-with-ruby-and-rails/ 
Using GlitchTip as part of the Tiki development process

https://trunkdev.tiki.org/Snapshots-from-trunk
https://trunkdev.tiki.org/Dependency-Injection
http://12factor.net/dev-prod-parity
http://12factor.net/dev-prod-parity
https://tiki.org/Pre-Dogfood%20Server
https://trunkdev.tiki.org/Configuration-Management-for-Tiki-Projects
https://trunkdev.tiki.org/Divergent-Preferences-in-Staging-Development-Production
https://trunkdev.tiki.org/Continuous-Integration
https://trunkdev.tiki.org/Using-Git-with-Tiki
https://trunkdev.tiki.org/SUMO-Upstream-Process
https://trunkdev.tiki.org/Translation-upstream
https://trunkdev.tiki.org/Semi-automatic-merging-period
https://github.blog/2023-04-06-building-github-with-ruby-and-rails/
https://github.blog/2023-04-06-building-github-with-ruby-and-rails/
https://trunkdev.tiki.org/Using-GlitchTip-as-part-of-the-Tiki-development-process

	Continuous upstream
	Context
	Examples
	Workﬂow trunk to stable
	Instances
	Steps

	Workﬂow stable to trunk
	Instances
	Steps

	Related


