
dev.tiki.org 2024-05-19 Page 1 of 3

Backport guidelines
Context
In theory, Tiki master/trunk should be kept stable enough for dogfooding. In practice, that would be risky.
And thus, many community members prefer to use stable versions, and backport fixes.

Backports take time, and can introduce regressions, which eats us time. Maybe that time is better
invested in fixing more bugs in master?

And the more the stable branch and master diverge, the more difficult and risky it becomes. On the other
hand, the sooner fixes and enhancements are in a stable branch, the sooner they are available to end
users.

So what is the right balance? We have some high-level guidelines at Where to commit. This page will help
with more explanations.

The Tiki26 release cycle is exceptional in that

We increased the requirements from PHP 7.4 to 8.11.
We started Using GlitchTip as part of the Tiki development process2.
We added PHPStan and Rector 3.
In May 2023 (the month before branching 26x), we broke the record for the number of monthly4.
commits.

As of 2023-06-06

We need to branch soon
In the coming months, we'll have hundreds of commits from the reports from GlitchTip and PHPStan.

Types of commits

Changes to the database structure
In general, these should not be backported. We've have too many problems in the past. Please see:
Database Schema Upgrade

Fatal error
Should be backported

Bug
Major: Can be backported.
Minor: Do you really need to backport? The next version will soon be upon us.

New feature
If self-contained, low risk and important to a specific project (client, dogfood for tiki.org, etc.), can be
backported (when not in a Freeze and Slush period)

Warnings
With default error reporting settings, warnings are generally only visible to admins. Fix these in the stable
branch if you are nearby - not essential for the .0 release, but nice to have one day.

https://tiki.org/dogfood
https://trunkdev.tiki.org/Where-to-commit
https://trunkdev.tiki.org/Tiki26
https://doc.tiki.org/PHP8
https://trunkdev.tiki.org/Using-GlitchTip-as-part-of-the-Tiki-development-process
https://github.com/phpstan/phpstan
https://github.com/rectorphp/rector
https://trunkdev.tiki.org/Database-Schema-Upgrade
https://tiki.org/dogfood
https://trunkdev.tiki.org/Freeze-and-Slush

dev.tiki.org 2024-05-19 Page 2 of 3

Deprecation warnings
What do we do about a deprecation warning to PHP 8.2? (We are running PHP 8.1 for many sites, but
we are hoping it works OK in PHP 8.2)

Nice to have one day
What do we do about a deprecation warning but that we don't know in which PHP version it will stop
working?

Act casual, hope no one notices �

Merging and cherry-picking
I propose that we allow [FIX] (etc) commits directly into 26.x and then use git merge back into
trunk/master to make sure all changes are contained in future versions. Cherry-picking from trunk to
26.x should still be ok and shouldn't create conflicts if done cleanly.

@Jonny Bradley: Would you envisage something like the script we had for Semi-automatic
merging period or each committer is responsible to track?

I am worried about omissions and merge conflicts. To keep things simpler, and reduce odds
of merge conflicts maybe everyone could make an effort to focus on 26x and any 27x
destined work could stay in GitLab draft merge requests until 26.0 is released? And thus,
most/all merge conflict resolution would fall on 27x, where we have plenty of time.

This is slightly different to the past couple of releases (always commit in trunk first then cherry-pick)
and a little more like how we did it in svn days, and should allow for easier and quicker testing of
fixes on real/staging sites running on 26.x before 26.0 release.

@Jonny Bradley: For Pre-dogfood servers for Tiki 26 release process, we'll have a fairly easy
way to test, but I agree that for the community at large, it's easier to just focus on 26.

I'd rather stay with commit-to-master and then backport to previous stable/supported branches back
to whatever is needed. Otherwise, we risk loosing updates in upcoming versions if someone forgets to
cherry-pick to master.

Fair enough, but wouldn't doing git merge periodically from 26.x to master catch anything that
was missed?

I feel (strongly) the we should keep cherry-picking

On the other hand, I don't care which direction we cherry pick to. It's more logical to do user bug1.
fixes on 26.x since one can relatively use the same database to test in master, while the reverse is not
true. As long as it's a rule that you are not done until you merge a change back into master, or wrote
in the commit message that it's unnecessary or unwanted in master.
I do not see how merging back could work, especially since the master branch is in the middle of2.
refactoring. Say someone fixes a bug in master (commit A). Then cherry picks in 26.x to backport, but
have to do changes (say a variable or function name) because master diverged (this isn't a merge
conflict). He does commit B in 26.x (say "Use old variable name for X). He is done, everything is fine.
The another developper comes along and fixes an unrelated bug directly in 26.x (commit C). He then
merges in master. Commit B gets pulled along, and master is now broken, in a completely unerelated
place.
We use a linear history process for master (we use rebase on merge requests by default). I do not3.
know of any way git can keep track that commit B above is still commit B when "merging" into
master. Cherry-pick doesn't have that problem as far as I know.
Halting merging merge request into master means (in practice) halting almost all fundamental work4.
in master (everything that affects a lot of files), as if the changes are not merged regularly, not only
will there be more and bigger conflicts once they do merge, but there is a lot more chance of the
merge being incorrect. For example (not that it is especially likely example, just an easy one to
understand), if master renames a global variable, and a merge request newly uses a global variable
(and that is frequent, prefs...), the code won't work once merged, even if there is no merge conflict.

https://trunkdev.tiki.org/user8515
https://trunkdev.tiki.org/Semi-automatic-merging-period
https://trunkdev.tiki.org/Semi-automatic-merging-period
https://trunkdev.tiki.org/user8515
https://trunkdev.tiki.org/Pre-dogfood-servers-for-Tiki-26-release-process

dev.tiki.org 2024-05-19 Page 3 of 3

2023-06-12: Victor, Jonny, Roberto and Marc discussed: We can try this commit-to-26x process for
this version, and evaluate after. (TODO update Where To Commit)

Related
Git cherry-pick
Where To Commit

https://trunkdev.tiki.org/Where-to-commit
https://trunkdev.tiki.org/Git-cherry-pick
https://trunkdev.tiki.org/Where-to-commit

	Backport guidelines
	Context
	Types of commits

	Merging and cherry-picking
	Related

